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ABSTRACT 

The authors study two well-known distortion functions, ~ (K) and ~x(r ), of the 
theory of plane quasiconformal mappings and obtain several new inequalities 
for them. The proofs make use of some properties of elliptic integrals. 

1. Introduction 

In the distortion theory o f  plane quasiconformal mappings two special 

functions, namely 2(K) and ~ox(r), play an important  role. The function 2(K), 

introduced by Lehto, Virtanen and V~iis~la [LVV], yields a sharp upper bound  

for the linear di latat ion o f  a plane quasiconformal mapping,  while ~ox(r) is the 

sharp upper bound in the quasiconformal version of  the Schwarz l emma [LV, 

Theorem 3.1, p. 64]. These functions will be defined in Sections 2 and 3, 

respectively. We now state some of  the main  results o f  this paper. 

1. I. THEOREM. The function (log 2(K))/(K - 1) is strictly decreasing from 
(1, ~ )  onto (rt, a), where a = (4/Tt).3f'2(1/x/2) = 2'(1) = 4.37688 and YF is a 
complete elliptic integral of  the first land. In particular, for 1 < K < ~ ,  
e,~X-1) < 2(K) < e °~x- i). 

1.2. THEOREM. The function ( log2(K) ) / (K-1 /K)  is strictly increasing 
from (1, oo) onto (b, rt), where b -- (2Dt).~"2(1/x/2) = ½2'(1) -- 2.18844 ando~f 
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is a comple te  elliptic integral  o f  the f irst  k ind .  In  part icular,  f o r  1 < K < 0% 
e b ( K  - IlK) < 2(K) < e "(K- I/K). 

1.3. THEOREM. For  K > l a n d  O < r < l, 

2ri/X 

(1 + r') '/K + (1 - r') IlK 

2 2- IIKrlIK 
< ~aK(r) < (l + r ' )  l/x + (1 -- r') ~/K" 

This last theorem improves the previously known bounds r l /K< ~aK(r)< 

4~-~/Kr vK ([AVV2, (3.5)] and [LV, (3.6), p. 65]; cf. [AVV1, (4.11)]). 
In the sequel, by/z(r) we shall mean the modulus of the Gr6tzsch extremal 

ring B2\ [0, r], 0 < r < 1, in the plane, which is given by the formula 

xJ/"(r) 
(1.4) /l(r) 

2~('(r) 

where 

(1.5) o~tr(r) = fo  "/2 (1 - r 2 sin2t)-1/2dt,  a~V'(r) = :,~f(r'), r '  = ~/1 - r ~ 

are complete elliptic integrals of the first kind ([BF, # 110.06], [Bo, p. 17]), 
whose values are listed in standard tables (e.g. [AS], [Fr]). For later reference 
we also recall that the complete elliptic integrals of the second kind ([BF, 
# 110.07], [Bo, p. 17]) are defined by 

f x/2 (1.6) E ( r )  -- (1 - r 2 sin2t)l/2dt, E ' ( r )  = E ( r ' ) ,  r' = x / l  - r e 
,dO 

The following useful identities are satisfied by the function/z for 0 < r < 1 
(cf. [LV, (2.7), (2.9), (2.3), pp. 60, 611): 

(1.7) 
it 2 1 - r  rt 2 ,, [ 2 x / r \  

tz(r)lz(r')  = 4 '  lt(r)lz ("{"~r)  = --2' l z ( r ) =  zlt  ~- l -~rJ"  

Throughout this paper, for t E [0, 1], t' will denote ~/1 - t 2, as in (1.5) and 
(1.6). When the argument of the function is clear, we shall frequently write :,~", 
~(" and E, E' instead of ~('(r), ,,l"'(r) and E ( r ) ,  E ' ( r ) .  We shall follow the 
relatively standard notation of [LV]. 

Finally, it should be pointed out that/z (1/~2) -- ~/2 by (1.7), and hence (see 
(2.1) and (3.1)) the functions ;t(K) and cK(r) are related by the identity 
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(~r(1/x/2) / 2 
(1.8) 2 ( r )  = / c > o .  

2. The 2-distortion function 

In 1959 Lehto, Virtanen and Viiis~ilii [LVV] (cf. [LV, pp. 80-82, 105-108]) 
introduced an important  function 

(2.1) 2(K) -- (g -l(n/2K)/#-~(nK/2)) 2, 

which measures the distortion of the boundary values of a K-quasiconformal 
self-mapping of the upper half plane preserving the point oo. We shall use (2.1) 
to study some properties o f g  and 2. 

2.2. PROOF OF THEOREM 1.1. First, let r = g - I ( n K / 2 ) .  Then, by [AVVI, 
(3.3), (3.1)], r = ( l + 2 ( K ) )  -In, 0 < r < 2  -In, or 2 ( K ) = r ' 2 / r  2. Thus 

(log 2 (K))/(K - 1) is strictly decreasing on (1, ~ )  if and only if the function 

log(r'/r) 
f ( r ) ~  

~ ( r )  

is strictly increasing on (0, l/x/2). Now by [AVV3, Lemma 2.7], 

rr '2 - 1 f ' ( r )  = - - 1 + - -  log -- ,  
25 f  2 r 

which is positive on (0, I/~/2) if and only if 

g ( r ) ~  2 3f'(ffl '  -- of') -- log(r'/r) < 0 
7t 

on this interval. But g(1 /x /2 )=O,  while [BF, #710.00] 
relation [BF, # 110.10] give 

nrr'2g'(r) = 4 ( ~ '  - ~ ) ( E  - r ' 2 ~ )  > 0 

and I_¢gendre's 

on (0, 1/C2). Thus g'(r) > O, g(r) < 0 for 0 < r < 1/v'2, so that f ' ( r )  > 0 on 
this interval. 

Finally, 

lim log 2(K) lim 2 log(r'/r) 
b ®  K -  1 ,-0 2 / z ( r ) / n -  1 
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by [AVV2, Lemma 2.6(2)], while 

lim log 2(K) = lim 216g(r'/r) = _4 o~f(2(1/v,2) 
x-1 K -  1 r-l/v2 2g(r)/n - 1 n 

by l 'H6pital 's rule and [AVV2, Lemma 2.6(2)]• The fact that a = 4'(1) follows 
from l'H6pital's rule and [AVV3, Lemma 2.7]. [] 

2.3. COROLLARY. The function log 2(K) is concave on [1, ~ )  and satisfies 

the inequality K ~'/x < 2(K) < K~X for K E (1, ~ ), where a is as in Theorem 1.1. 

PROOF. By elementary calculus, (K - 1)/K < log K < (K - 1)/x/K for K E 

( 1 , ~ ) .  Hence x / K l o g K < K - 1  < K l o g K ,  and the result follows from 

Theorem 1.1. [] 

2.4. COROLLAR','. (1) For 0 < r < 1/v'2, 

_ r' < _n r' 
+ n log -- < / z ( r )  + log -- .  

2 a r 2 r 

(2) For 1/x/2 < r < 1, 

7/2 
< p ( r )  < 

7[ 2 

There is equality in both (1) and (2) when r = 1/x/2. Here a = 4x2(1/~/2). 

PROOF. Statement (1) follows from Theorem 1.1 if, as usual, we set 
K = 21z(r)/n, while (2) follows from (1) and (1.7). [] 

2.5. PROOF OF THEOREM 1.2. AS in the proof  of  Theorem 1.1 we set 
r = / z -  ~(rrK/2) = (1 + 2 ( K ) ) -  ~/2, 0 _< r _< 2 -~/2. Then the theorem is true if and 

only if  the function 

log(r'/r) 
f ( r ) ~  

a~("(r) ~(r)  
~('(r) ~f("(r) 

is strictly decreasing on (0, l/x/2). By [ A W 3 ,  Lemma 2.7] 

gl 
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which is negative on (0, l /x/2) if and only if 

2 ~,2  _ jl2 r '  

g(r)=--- ~yi'~r, log -- > 0 
~z 31 ' '2 + ,~e "2 r 

there. Since g ( 1 / v ' 2 ) =  0, it is sufficient to show that g ' ( r )< 0. Next, [AVV3, 
Lemma 2.7] and Legendre's relation [BF] show, after some simplification, that 
g'(r) < 0 if and only if 

(2.6) o~f-'(E - r'2ffC)(ff/"'2 + a~i r2) < 7tff/'2/2. 

By using Legendre's relation [BF] to eliminate the factor 7t/2 and by perform- 
ing further algebraic simplifications, we may show that (2.6) is equivalent to 
h(r) < h(r') on (0, l/x/2), where 

f nl2 
h (r)---- r2~i r'3 c°s2t dt. 

,I 0 x/1 - r2sin2t 

But since r < r' for r E(0, 1/v'2) and since h is clearly strictly increasing, we 
have h(r )<  h(r') on (0, l/x/2), as desired. [] 

2.7. COROLLARY. For 0 <= r < l /x/2,  define the function f by f(O) = 1, 
f ( l /x /2)  = c----7t2/(2oaf'2(l/x/2)) = 1.43553, and f(r)  = (It(r) -IL(r'))/log(r'/r) i f  
r ~(0,  l/x/2). Then f is continuous and strictly increasing. In particular, for 
0 < r <  l/x/2,  

r '  -- < 7t2 log ( ~ ) .  
lOg ( r )  < / t ( r  ) /t(r') 2.y12~-/x/2 ) 

There is equality throughout when r = l /x/2.  

PROOF. If  we set K = 2p(r)/rt then 1 < K < ~ ,  and I /K = 2/~(r')/Tt by the 
first identity in (1.7). Hence 

(log 2(K))/(K - 1/K) = 7t(log(r'/r))/~(r) - p(r')), 

and the result follows from Theorem 1.2. [] 

2.8. REMARK. Sincef(r)  -- f(r ')  for 0 < r < I /v '2 ,  we also obtain 

log <l~(r ' ) - I~(r )<2o~2( l lv ,2  ) log 

for 1 / v ' 2 < r  < 1. 
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2.9. COROLLARY. For 0 < r < l/x/2, 

< / ~ ( r ) < ~  [clog ( ~ ) +  ~ / / T t 2 + c 2 ( l o g ( ~ ) ) 2 ] ,  

where c = ~:/(2.~2(1/x/2)). There is equality when r = l/x/2. 

PROOF. By (1.7) we may replace II(r') by ~t2/(4/~(r)) in 2.7, thereby 
obtaining 

Hence 

u2(r) - -  7t2/4 7t 2 
1 

#(r)log(r'/r) 2~(2(1/x/2)" 

and 

(2.11) /~2(r) - c/~(r)log < - - .  
4 

Solving (2.10) and (2.11) for/~(r) gives the left and right inequality, res- 
pectively. [] 

2.12. REMARK. For c > 0 and 0 < r < 1 define 

Then Corollary 2.9 may be written as 

Gl(r)<~(r)<Gc(r) f o r 0 < r  < lx/2, 

Gc(r)<l~(r)<Gl(r) for l/x/2 < r  < 1, 

where c -- lt2/(2K2(l/x/2)). We note that Gc(r)Gc(r') = 7t2/4, so that Gc satisfies 
the first identity for/~ in (1.7) for each c > 0. 

We next obtain a slightly improved estimate for the error term in a theorem 
due to Lehto, Virtanen and Vais~l~ [LVV, Theorem 3]. 

(2.10) #2(r) - /~  (r)log > - -  
4 
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2.13 .  THEOREM. For each K ~ ( I ,  oo), 2 (K)= ~e  ~ g -  ½+6(K), where 

6(K) E (e- ~x, 2e -'x). 

PROOF. The upper bound was obtained in [LVV, Theorem 3]. 
By [LV, p. 62] we have 

2(1 + r') 
/z(r) < log 

r 

Exponentiating and squaring gives 

l + r '  
e 2~(r) < 4 

1 - -  r '  

so, solving for r' and using the relation r 2 = 1 - r '2, 

(2.14) r < - -  
4d,(,) 

4 + e 2~(r) " 

Next, for K > 1, if we set r = /z -  ~(nK/2) then 0 < r < 1/v'2, and by (2.1) and 
(2.6) we have 

1 4e r'r/2 

x/1 + 2(K) 4 + e ~g" 

Solving for 2(K) then gives 2(K) > ~e  ~g - ½ + e -~x. [] 

2.15. REMARKS. (1) One may obtain bounds for 2(K) for 0 < K <  1 by 
replacing K by 1/K in Theorems 1.1, 1.2 and 2.12 and appealing to the relation 
2(1/K) = 1/2(K) [LV, (6.5), p. 81]. 

(2) The bounds in Theorem 1.1 also follow from [BAh, §4.4] since the 
function P(p) studied there by Beurling and Ahlfors is the inverse function out 
(cf. [L, p. 161). 

3. The @-distortion function 

The classical Schwarz Lemma for analytic functions was generalized in 1952 
by J. Hersch and A. Pfluger [HP] to the class of quasiconformal mappings of 
the plane unit disk. They showed that there is a strictly increasing distortion 
function @K -- @g,2 : (0, 1) --- (0, 1) such that I f(z)l  < @g(Iz I) for each K-quasi- 
conformal mapping of the unit disk B 2 into itself with f(0) = 0. This distortion 
function is defined by 
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(3.1) CK(r) -- /z-  ~ ( 1 / z ( r ) ) .  

For each K > 1, the function ~x(r) provides a sharp upper bound for If(z) I 
for Izl = r [LV]. For KE(0 ,  1) we define ~x(r) by (3.1), and we also define 
¢x(0) = 0 and q~x(l) = 1. Since/z is strictly decreasing on [0, 1 ], it follows that 
cx(r) > r for K > 1 and ~x(r) < r for 0 < K < 1, with equality in each case if 
and only if K = 1. Clearly ~ = ~/x. In 1960 the explicit estimate 

(3.2) cx(r) < 4 I- UXrl/X 

for ~ax(r), K > 1, 0 < r < 1, was obtained by Wang ([W], [Hfi], [LV, (3.6), 
p. 65]). This inequality is asymptotically sharp in the sense that 
lim,_or-VX~x(r)=41-1/K. By [AVV2, Theorem 3.4] we know that 1 < 
r-~xcx(r)<4~-~/x for each rE(0 ,  1), while [ A W l ,  Theorem 4.10] gives 

another pair of bounds for cx(r). In this section we obtain additional inequali- 
ties and identities satisfied by this function. 

3.3. THEOREM. For K >O and r, s~[O, 1], we have 

(3.4) 

(3.5) 

and 

(3.6) 

PROOF. 

~o2x(r) + ~o~/x(s) = 1 *=~r 2 + s 2 = 1, 

~o,/x(s) = (1 -- ~oK(r))/(l + ~ox(r))*~,s = (1 - r)/(1 + r), 

tpx(s) = 2(~ox(r))l/2/(1 + ~ox(r))*=*s = 2rl/2/(1 + r). 

These follow from (1.7) and the fact that/z is a one-to-one function. 
[] 

3.7. THEOREM. F o r K > O a n d r ~ [ O ,  1], 

(3.8) ~02x(r) -- tPx(2x/r/(1 + r)), 

(3.9) ¢2x((1 - r)/(1 + r)) = ~x(v/T - r2), 

( ( 1 -  r y  ) 1 -  ~2x(r 2) 
(3.10) ~l /X \ \ l  + r /  -- 1 -I-~O2K(r2) " 

PROOF. If  we divide both sides of  the third identity in (1.7) by 2Kand  then 
apply/t-~ to both sides, we achieve (3.8), while (3.9) follows if we replace r by 

(1 - r)/(1 + r) in (3.8). 
Next, by (3.4), the definition of  ~ ,  and the third identity in (1.7) we have 
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( (1  -_r/2 ) KT? ~2 (. _ ~ozx(r2)/ -- -- - = / 1  - -  ; 

K/~ k \ ] -~ r}  fl(r 2) 2~(~2K(r2)) + ~2K(r2)/ 

taking/t - 1 of  both sides then gives (3.10). [] 

3.1 1. REMARKS. (1) The relation (3.5) was proved by D. Ghisa [G]. 
(2) From (3.4) and the fact that ~02(r) = 2x/r/(1 + r) [LV, p. 64] it follows 

easily that ~Ol/2(r) = (1 - r')/(1 + r'), 0 < r < 1. 
(3) For n-dimensional quasiconformal mappings see [Vu]. The n-dimen- 

sional analogue of (3.4) is false; that is, for n > 3 it is not true that ~02, (r) + 
~o2/x,, (r')------ 1, where ~ox,,(r) is the n-dimensional counterpart of ~ox(r) (cf. [Vu, 
5.61, (7.44)]. Otherwise, for K > I  by [AVV2, (3.6)] we would have 
r '  -k~Oi/K,n ( r" ) > 21 - ~/*r' - X + ~/~ . . ,  ~ as r --- 1, contradicting [AVV2, (3.14)]. By 
symmetry, this argument also applies for 0 < K < 1. Alternatively (cf. [Vu, 
7.58]), it may be shown that this (false) identity is equivalent to M ,  ( r )M,  (r') = 

constant, which contradicts [AVV2, Lemma 2.6(2)]. Here M , ( r )  is the n- 
dimensional analogue of/t(r) (cf. [Vu, 7.58] and [AVV2]). In particular, we see 
by (3.4) that for n ->_ 3 and K > 1 there is no T > 1 such that ~ox,,(r) -- ~0r,2(r) 
and ~o~/x,,(r') = ~Ol/r,2(r') for all r E(0, 1). 

3.12. LEMMA. For K >  1, let s = ~ox(r). Then g(r)~s '~C'(s) /(r 'oqg(r))  is a 

strictly decreasing funct ion f r o m  (0, 1)onto (0, 1). 

PROOF. Since/t(s) = I t ( O / K ,  by differentiation it follows from [AVV3, 
Lemma 2.7] and Legendre's relation [BF, # 110.10] that 

(r,o~Cg(r))2g,(r) s'~g'(s) 
rr'o~V'(r) 
- -  [o~fr(r)E'(r) - ~'f'(s)E'(s)]. 

But this expression is negative since s > r and :,~f(r)E'(r) is strictly increasing 
on (0, 1). Finally, the limits g(0 +) = 1 and g(1 - )  = 0 follow from l'H6pital's 
rule. [] 

3.13. THEOREM. For K > 1 and  a,  b ~ (0, 1) 

(ox( ab ) < ~ox( a )~ox( b ). 

PROOF. For convenience we let ~r be denoted by ~. Fix a E (0, 1) and let 
f ( r )  = ~(ar)/q~(r) for 0 < r =< 1. Let ar = u,  ~ (u )  = t, and ~(r) = s. Then by 
[AVV3, Lemma 2.7] and Lemma 3.12 we have 
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K f ' ( r ) s r _ (  t '~"(t)12_(s':~F(s)l  2 
t \u 'a f (u) /  \r'~t"(r)/ > O. 

Hence f i s  strictly increasing, and f(r)  < f(1) = ~(a). [] 

In the proof  of our next functional inequality for ~K we shall need the 
following two lemmas. 

3.14. LEMMA. Let f(r) = (log ~x(r))/(log r). Then for K >  1, f is a strictly 
decreasing function from (0, 1) onto (0, l/K). For 0 < K < 1, f is strictly 
increasing from (0, 1) onto (1/K, ~ ). 

PROOF. First let K > 1. If  we set s = ~x(r) then 0 < r < s < 1 and K = 
lz(r)/ll(s). By [AVV3, Lemma 2.7] and [AVV3, Lemma 2.8(6)] we have 

r(log r)2f'(r) = s ' 2~ ( s )~ ' ( s )  [ log r log____ss .] < 
Lr,2~ir(r)~,(r) S ' 2 '~(S) '~("(S) / 0 

for 0 < r < 1. We achieve the transition to 0 < K < 1 by replacing K by 1/K. 
The limit as r tends to 0 follows from l'H6pital's rule, [AVV2, (3.7)], and the 

asymptotic formula in [AVV2, Corollary 3.8]. As r tends to 1, the limit follows 
by l 'H6pital 's rule and the values of ¢~(1) found in [AVV2, Corollary 3.8]. [] 

3.15. LEMMA. Let f (  r ) = (artanh ~ar(r))/(artanh r ). For K > 1, f is a strictly 
decreasing function from (0, 1) onto (K, oo). 

PROOF. By (3.5), f(r)  = (log 9ur(s))/(log s), where s = (1 - r)/(1 + r). 
Then the result follows from Lemma 3.14. [] 

3.16. COROLLARY. For K > 1, the function (artanh ~K(tanh x))/x is strictly 
decreasing from (0, ~ )  onto (K, oo). 

PROOF. Put r = tanh x in Lemma 3.15. [] 

A function-theoretic application of 3.15 will be given below in Remark 3.30. 

3.17. THEOREM. F o r K >  1 andr,  s~(O, 1), 

[ r + s ~ ~ox(r) + ~or(s) 

1 + ~ax(r)~x(s) 

The inequality is reversed i f  O < K < 1. 

PROOF. Let K > 1. By Corollary 3.16 and [AVV2, Lemma 2.12] we get 
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artanh q~(tanh(x + y)) < artanh ~0K(tanh x) + artanh ¢~x(tanh y). 

Now take tanh of both sides, use the addition formula for tanh, and set 
tanh x = r ,  t a n h  y = s .  

Finally, the result follows for 0 < K < 1 when we replace K by 1/K. [] 

In 1984 He proved the following result [He, Lemma 1 ] for K >_- 1. It had been 
mentioned by Hfibner [Hfi] in 1970 without a proof. The extension to 
0 < K < 1 is a simple consequence of the fact that (Pl/r = ¢K '. 

3.18. THEOREM. For K > 1 the function r-~lxq)K(r) is a strictly decreasing 
function of(O, 1) onto (1,41-I/r). For 0 < K < I ,  r-UK~x(r) is a strictly 

increasing function of(O, 1) onto (4 I-uX, 1). 

We now prove some consequences of He's theorem. 

3.19. LEMMA. ForK > 1 and each nonnegative integer p, 

~TK(r)p + 1 ~ 4P(I - t/K)~K(rP + 1). 

PROOF. The proof is by induction. Forp  = 0 this is trivial. Forp  = 1, He's 
theorem and (3.2) imply that 

~K(r 2) >= rUXq~x(r ) > 4-1+ l/g~K(r)2" 

Now assume that.-the lemma is true for integers < p - 1. Then 

~ox(rp+ 1) >= r~/X~ox(r p) >__ 4 -l+ l/X~ox(r)~ox(rp ) >= 4 ~- 1+ llK)P~OK(r)P+l 

by the induction hypothesis. [] 

3.20. THEOREM. Fora,  bE[0,  1] a n d K  > 1, 

(3.21) I~ox(a)-~ox(b)l < ~ o x ( l a - b l ) < = 4 1 - l / X l a - b l  '~x, 

and for 0 < K < 1, 

(3.22) I~x(a) -~x(b) l  > ~ x ( l a -  b l ) >  4 ' - I / X l a - b l  'zx. 

PROOf. He's theorem implies that r - l ~ ( r )  is decreasing on (0, 1). Hence 
(3.21) follows from [AVV2, Lemma 2.12] and (3.2). Then (3.22) follows from 
(3.21) when we replace K b y  1/K. [] 

3.23. COROLLARY. For n = 2, K > 1, a, b, x ,  y E [0, 1], a + b = 1, we have 

~x(ax + by) <= ½(ax + by)l'X[(ax)- l'x~x(ax ) + (by)-l'x~x(by)] 

and 
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~x(ax + by) < q~x(ax) + ~ox(by) <-_ ~ox(a)~ox(x) + ~x(b)~ox(y). 

These inequalities are sharp for K = 1. 

PROOF. These follow from He's theorem and Theorem 3.13. 

3.24. LEMMA. F o r K  > 1 a n d a ,  b~(O,  1), 

~or(ab ) > max{ bl/Xq~x(a), a l/x~ox(b ) }. 

PROOF. By He's theorem, 

( ab ) - t'K~ox( ab ) >= max{a-t~K~0x(a), b-t'r(ox(b)}, 

and the inequality follows. 

3.25. COROLLARY. ForK>= 1 a n d a ,  bE(O,  1), 

~ox (a )q~x(b ) < 41 - l/K~ox(ab ). 

PROOF. By Lemma 3.24 we have 

( ab ) vx~ox( a )~ox( b ) < ( ~ox( ab ) ) 2 

and 

[] 

[] 

(ab) l/r > 4 -l  + l/x~ox(ab). [] 

3.26. THEOREM. I f K  ~ 1, p > 1, and x > 0, then 

~ox(tanh px)  < p~Jr~oK(tanh x). 

PROOF. By He's theorem, 

(tanh px)  -I~Xq)x(tanh px)  <- (tanh x) -I/X~0x(tanh x). 

But it is easy to show by differentiation that tanh px  < p tanh x, and the 
theorem follows. [] 

3.27. THEOREM. I f  K >  1, then ~ox(r) is strictly concave on [0, 1] and 
q)k(0) = oo, ~0k(1) = 0. I fO < K < 1, then q)~(r) is strictly convex on [0, 1] and 

= o ,  ¢ ' , c (1 )  = oo .  

PROOF. Let K > I, 0 < r < I, and s -- q)x(r). Then/~(s) -- It(r)/K and, by 
[AVV3, Lemma 2.7], 

a s _  I s 
dr K r \r'Yg'(r)/ " 
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He's theorem implies that s/r is strictly decreasing as a function of  r, while 
g(r)----s'3V(s)/(r',.~lr(r)) is strictly decreasing by Lemma 3.12. Hence the 
derivative of ~x(r) is a strictly decreasing function of r if K > 1. The strict 
convexity of ~r when 0 < K < 1 now follows from the fact that ¢~/r(r)= 

The derivatives ~k(0) and ¢~(l) for each K > 0 were obtained in [AVV2, 
Corollary 3.8]. [] 

3.28. THEOREM. For 0 < r < 1, 

41/r(1 + r)-2nCr l/r, 

~r(r) < [41-l/X( 1 + r) -2/xrl/x, 

PROOF.  

l < K < 2 ,  

K_>_2. 

I f K E [ 1 ,  2], then by (3.11)(2) and [ A W l ,  (4.12)], 

~x(r) = ~x /2(~92(r ) )  ~ ~02(r)2/K = 4 ILK(1 + r) - 2/Xr IlK. 

The proof  for K > 2 is similar, except that we use [ A W  1, (4.11)]. [] 

3.29. PROOF OF THEOREM 1.3. The first inequality follows from [ A W 2 ,  
Theorem 3.4]. For the second inequality we assume first that s E(0, 1) is so 
small that 41- t/Ks i/x is less than 1. Then by (3.2) and (3.1) we have 

1 
K/~(s) > / t (4  l-  =nCsl/K), 

and it follows from the third identity in (1.7) that 

{ 2x/s~ 22-1nCSl/2K 

(1 • 
If  we set r = 2x/s/(l  + s) and use (3.1), then since s = (1 - r')/(1 + r') the 
latter inequality reduces to 

22- IlK r l/X 
~ r ( r )  _--< 

(1 + r') IlK + 41-1nC(l - r') tnc' 

which implies our assertion. 

Next, suppose 41-tlXsl/X>l,  and set r = 2 x / s / ( l + s ) .  Then s =  
(1 - r')/(1 + r'), whence 

/ 1 - -  r ' \  l / x  4 1 - 1 n o | - - |  > 1. 
\1 + r'/  
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Taking square roots and multiplying both sides by (1 + r') 1Ix we obtain 
21-1trr ilk > (1 + r') 11r, from which it follows that 

22- I/Krl/K 2(1 + r') I/K 
>-- >-- 1 > ~ ( r ) .  [] 

(1 + r') lm+  (1 -- r') '/K -- (1 + r') 1'~ + (1 -- r') ''r -- 

3.30. REMARK. I_emma 3.15 has the following application to the quasi- 
conformal Schwarz lemma (cf. [LV, Theorem 3.1, p. 64]). Let p be the 
hyperbolic metric of the unit disk B 2, and let f : B 2 " * B 2 C B  2 (cf.  

[Vu, (2.18)])be K-quasiconformal. Then 

for all x, y ~ B  2. Since p is a metric it follows, for instance, from [AVV2, 4.7(1)1 
that tanh p(x ,  y)/2 is also a metric. Next, solving for p ( f ( x ) ,  f(y)) we obtain 

(3.31) p ( f ( x ) , f ( y ) ) < =  2 artanh ~K ( t a n h P ( 2  Y) ) . 

Now, by the monotone property 3.15 and [AVV2, 4.7(1)] it follows that the 
right side of (3.31) is a metric. 

3.32. REMARK. In 1970 O. Hiibner [Hii] showed that 

when K >_- 1, 0 _-< r < 1, improving (3.2). We now show that Hfibner's bound is 
best possible in a certain sense. Suppose 

9r(r)  < r exp [2 ( 1 - 1 )  r'2L,~(r).Xr'(r)] 

for some c > 1. Then letting K tend to oo and taking logarithms, we get 

1 
log - 

r 2 
<_ - r,C-l.,,~(r)..,~,(r). 

r tc+l ~ 7t 

But [AVV2, Lemma 2.6(2)] implies that the left side tends to oo as r tends to 1, 
while the right side tends to 0 by [BF, # 112.01, 111.02], and we arrive at a 
contradiction. 
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Fig. 1. ~o(r) = ~03/2(r ), 0 < r < 1, and bounds thereof. 

2r ~3 
Lower: f(r) = tanh(½ artanh r), g(r) = (1 + r') 2/3 + (1 - r') 2/3" 

3~ z r2r'~ ] 
Upper: F(r) = tanh [ G(r) dl(r).~'(r) \a~(r)/' = r exp [-~- . 

In conclusion we display in Fig. 1 the graph of the distortion function ~3/2(r), 
obtained by linear interpolation from a table of values of # that we had 
constructed by the arithmetic-geometric mean iteration of Gauss [BB] (cf. 
[AS]). Then graphs of upper and lower bounds for ~3/2(r) are shown for 
comparison. In particular, the functions f ,  F are the bounds in [AVV1, (4.5)], 
the function g is the lower bound in Theorem 1.3, and G is H(ibner's upper 
bound in 3.30. 
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