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ABSTRACT

The authors study two well-known distortion functions, 1(K') and gx(r), of the
theory of plane quasiconformal mappings and obtain several new inequalities
for them. The proofs make use of some properties of elliptic integrals.

1. Introduction

In the distortion theory of plane quasiconformal mappings two special
functions, namely A(K) and ¢,(r), play an important role. The function A(K),
introduced by Lehto, Virtanen and Vaisala [LVV], yields a sharp upper bound
for the linear dilatation of a plane quasiconformal mapping, while gx(r) is the
sharp upper bound in the quasiconformal version of the Schwarz lemma [LV,
Theorem 3.1, p. 64]. These functions will be defined in Sections 2 and 3,
respectively. We now state some of the main results of this paper.

1.1. THEOREM. The function (log A(K))/(K — 1) is strictly decreasing from
(1, ) onto (r, a), where a = (4/m)X*(1/v/2)=A"(1)=4.37688 and X is a
complete elliptic integral of the first kind. In particular, for 1 <K <,
e’ D J(K)y<e®®—D,

1.2. THEOREM. The function (log A(K))/(K — 1/K) is strictly increasing
from (1, o) onto (b, n), where b = (2/n)X*(1//2) = 4A"(1) = 2.18844 and X
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is a complete elliptic integral of the first kind. In particular, for | <K < w0,
eb(K—l/K) <).(K) < en(K—l/K).

1.3. THEOREM. ForK>1and0<r<1,

zrlfK 22—1/Krl/K

< r)y<< .
(1+ 1) +(1 — 1)K ox(r) (14 r)VE 4 (1 — p/)K

This last theorem improves the previously known bounds r'f < g,(r) <
4'-VKrUK ([AVV2, (3.5)] and [LV, (3.6), p. 65]; ¢f. [AVV], (4.11))).

In the sequel, by u(r) we shall mean the modulus of the Grétzsch extremal
ring B2\ [0, r], 0 <r <1, in the plane, which is given by the formula

_ A (r)
24°(r)

(1.4) u(r)

2
where

(1.5) H(r)= fo (- e, A=A, = JTF

are complete elliptic integrals of the first kind ([BF, #110.06], [Bo, p. 17)),
whose values are listed in standard tables (e.g. [AS], [Fr]). For later reference
we also recall that the complete elliptic integrals of the second kind ([BF,
#110.07], [Bo, p. 17]) are defined by

(1.6) E(r)=f0"/2 (1—r2sin?)dt, E(r)=E(@), r=1-r

The following useful identities are satisfied by the function u for 0 <r <1
(cf. [LV, (2.7), (2.9), (2.3), pp. 60, 61]):

N E 1-n_= _ou (2

D weouer =5, wen(i) =5 o -u(FE).

Throughout this paper, for ¢ €[0, 1], ¢’ will denote /1 — ¢, as in (1.5) and
(1.6). When the argument of the function is clear, we shall frequently write X",
X and E, E’ instead of X'(r), X”(r) and E(r), E’'(r). We shall follow the
relatively standard notation of [LV].

Finally, it should be pointed out that #(1/+/2) = n/2 by (1.7), and hence (see
(2.1) and (3.1)) the functions 1(K) and gx(r) are related by the identity
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(1.8) AK) = (M)Z, K>0.
pux(1/+/2)

2. The A-distortion function

In 1959 Lehto, Virtanen and Viisala [LVV] (cf. [LV, pp. 80-82, 105-108])
introduced an important function

(2.1) MK) = (u™'(n/2K)/u~(nK/2))?,

which measures the distortion of the boundary values of a K-quasiconformal
self-mapping of the upper half plane preserving the point co. We shall use (2.1)
to study some properties of x and A.

2.2. ProoF oF THEOREM 1.1. First, let r = u~'(zK/2). Then, by [AVV],
(3.3), 3.1], r=(1+AK)™"%, 0<r=2""2 or AK)=r?*r’. Thus
(log A(K))/(K — 1) is strictly decreasing on (1, o0) if and only if the function

_ log(r'/r)
REAGH
H(r)

1)

1

is strictly increasing on (0, 1/4/2). Now by [AVV3, Lemma 2.7],
A’ 2 b (4 r
rr’2<—-— 1) "(r)= —(—-— 1) + — log —,
K S K 247 & r
which is positive on (0, 1/4/2) if and only if
2
g(ry=— A (A" —H)—log(r'/r)<0
n
on this interval. But g(1/v/2) =0, while [BF, #710.00] and Legendre’s
relation [BF,#110.10] give
g () =4AH" — HANE —r'*H)>0

on (0, 1/4/2). Thus g’(r)>0, g(r) <0 for 0 <r < 1/4/2, so that f*(r)>0 on
this interval.
Finally,
1 K ’
im og A(K) = lim 2 log(r'/r) —

li
ko K—1 0 2u(r)/im —1
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by [AVV2, Lemma 2.6(2)], while

lim log A(K) _ lim _216g(r'/r)_ = 4 HH(1/V2)
k-1 K—1 r=wwv22u(r)fn—1 =

by ’Hépital’s rule and [AVV2, Lemma 2.6(2)]. The fact that a = 1’(1) follows
from I’'Hopital’s rule and [AVV3, Lemma 2.7]. O

2.3. COROLLARY. The function log A(K) is concave on [1, «) and satisfies
the inequality K™% < A(K) < KX for K €(1, ), where a is as in Theorem 1.1.

Proor. By elementary calculus, (K — 1)/K <log K <(K — 1)/~/Kfor K€
(1, ). Hence vKlog K <K —1<KlogK, and the result follows from
Theorem 1.1. O

2.4. CorROLLARY. (1) ForO0<r<1/v/2,

n n r (4 r

—+-log— <u(r)<—+log—.

2 a r 2 r
(2) For1/v2<r<l,

2 2
<u(r)<

4(E+10g1) 4<E+Elogi>
2 r 2 a r
There is equality in both (1) and (2) when r = 1//2. Here a = 4x*(1/v/'2).

ProoF. Statement (1) follows from Theorem 1.1 if, as usual, we set
K = 2u(r)/n, while (2) follows from (1) and (1.7). O

2.5. PRooF OF THEOREM 1.2. As in the proof of Theorem 1.1 we set
r=p"'#K/2)=(1+ A(K))~'2,0 = r =27'2 Then the theorem is true if and
only if the function

_ log(r'/r)
=%0 _ x0
A(r) A(r)

is strictly decreasing on (0, 1/4/2). By [AVV3, Lemma 2.7}

(T AN (.xr ar) 7:(1 1) r
— ) ¥ ry=—\—=——+=-|—=+—) log —
(xr x) 0=~ %) 2\ ) 17

-



Vol. 62, 1988 QUASICONFORMAL MAPPINGS 5

which is negative on (0, 1/4/2) if and only if

x'/Z _ xZ r

2
rN=— XX’ —log —>0
8() n K"+ 2 ¢ r

there. Since g(1/v/2) =0, it is sufficient to show that g’(r) < 0. Next, [AVV3,
Lemma 2.7] and Legendre’s relation [BF] show, after some simplification, that
g'(r) <0 if and only if

(2.6) HE — 1K) A"+ H) < nHY2.

By using Legendre’s relation [BF] to eliminate the factor #/2 and by perform-
ing further algebraic simplifications, we may show that (2.6) is equivalent to
h(r)<h(r) on (0, 1//2), where

2
cos’t
———dl.
1 —risin%

But since r <r’ for r €(0, 1/4/2) and since 4 is clearly strictly increasing, we
have h(r) < h(r’) on (0, 1/+/2), as desired. ]

n/2
h(ry=r’x"3 f
0

2.7. COROLLARY. For 0 =r =1/v/2, define the function f by f(0)=1,
[V 2y = c=aQ2HH1/v2)) = 1.43553, and f(r) = (u(r) — u(r’))og(r'ir) if
r€(0, 1/+/2). Then f is continuous and strictly increasing. In particular, for
0<r<l1/v2,

log <r_’> <u(r)—u(r)< ——L lo <r_’)
r 2H4°(1/v/2) & rl’
There is equality throughout when r = 1//2.

Proor. If we set K = 2u(r)/nthen 1 <K < oo, and 1/K = 2u(r’)/n by the
first identity in (1.7). Hence

(log A(K))/(K — 1/K) = m(log(r’/r))/(u(r) — u(r’)),
and the result follows from Theorem 1.2. 0

2.8. REMARK. Since f(r) = f{r’) for 0 = r < 1/v/2, we also obtain

r n_ = .
log(r,)<u(r) u(r)<2 H(VD) log<r,)

forl/vV2<r<1.
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2.9. COROLLARY. ForO<r <1/4/2,

2 [0+ Vs ()
<ur< [eoe () +\ [ ]

where ¢ = n¥ QA }(1/v/2)). There is equality when r = 1/v/2.

Proor. By (1.7) we may replace u(r’) by n%/(4u(r)) in 2.7, thereby
obtaining

uXr) — n*4 <o n?
u(r)log(r'/r) 24°%(12)°
Hence
’ 2
(2.10) W) — u(r)log (’—)>”—
r 4
and
r -7!2
.11 uA(r) — cu(r)log (—) <I .
r

Solving (2.10) and (2.11) for u(r) gives the left and right inequality, res-
pectively. O

2.12. REMARK. Forc¢>0and 0 <r <1 define

oor-Lo()+ Vo)

Then Corollary 2.9 may be written as

G(ry<u(n<G(ry forO0<r<l1v?2,
G(r)<u(ry<Gyr) forl/vV2<r<l,

where ¢ = n%/(2K*(1/+/2)). We note that G.(r)G.(r") = n%/4, so that G, satisfies
the first identity for 4 in (1.7) for each ¢ > 0.

We next obtain a slightly improved estimate for the error term in a theorem
due to Lehto, Virtanen and Vaisald [LVV, Theorem 3].
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2.13. THEOREM. For each K€(l, ©), A(K)=fe™ — i+ 6(K), where
O(K)E(e ™K, 2e~ ™),

Proor. The upper bound was obtained in [LVV, Theorem 3].
By [LV, p. 62] we have

u(r)y<log M

Exponentiating and squaring gives

’
) < 4 14+r :
1—r

s0, solving for 7’ and using the relation r* =1 —r’?,

4el‘(’)

(2.14) I <

Next, for K > 1, if wesetr =z~ (zK/2)then 0 <r < 1/+/2,and by (2.1) and
(2.6) we have
1 412

< .
JIFAK) 4+e=*

Solving for A(K) then gives A(K)> ke™ — 4+ e~ "™, O

2.15. REMARKS. (1) One may obtain bounds for A(K) for 0 <K <1 by
replacing K by 1/K in Theorems 1.1, 1.2 and 2.12 and appealing to the relation
A(l/K) = 1/A(K) [LV, (6.5), p. 81].

(2) The bounds in Theorem 1.1 also follow from [BAh, §4.4] since the
function P(p) studied there by Beurling and Ahlfors is the inverse function of 4
(cf. [L, p. 16]).

3. The ¢-distortion function

The classical Schwarz Lemma for analytic functions was generalized in 1952
by J. Hersch and A. Pfluger [HP] to the class of quasiconformal mappings of
the plane unit disk. They showed that there is a strictly increasing distortion
function gx = g, : (0, 1)—(0, 1) such that | f(z)| < ¢x(|z|) for each K-quasi-
conformal mapping of the unit disk B? into itself with f(0) = 0. This distortion
function is defined by
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1
(3.1) px(r)=p"" <} u(r)> :

For each K = 1, the function ¢,(r) provides a sharp upper bound for | f(z)|
for |z| =r [LV]. For K€(0, 1) we define gx(r) by (3.1), and we also define
9x(0) = 0 and ¢(1) = 1. Since y is strictly decreasing on [0, 1], it follows that
ox(ry=rfor K = 1 and gx(r) = r for 0 <K = 1, with equality in each case if
and only if K = 1. Clearly ¢z ' = ¢,x. In 1960 the explicit estimate

(3.2) ox(r) < 4!~ VKUK

for gx(r), K= 1, 0<r <1, was obtained by Wang ([W]}, [Hua], [LV, (3.6),
p. 65]). This inequality is asymptotically sharp in the sense that
lim,_q 7~ "Xpi(r) = 4'~YK, By [AVV2, Theorem 3.4] we know that 1<
r~ kg (r)<4'~VX for each r€(0, 1), while [AVV1, Theorem 4.10] gives
another pair of bounds for g,(r). In this section we obtain additional inequali-
ties and identities satisfied by this function.

3.3. THEOREM. For K>0andr,s€J0, 1], we have

(34) px(r) + ix(s)=ler+s=1,
(3.5) Quk(s) = (1 — gx(N))/(1 + pp(r)) = s = (1 = r)/(1 + 1),
and
(3.6) 9x(s) = 2px(r)*/(1 + gx(r)) =5 = 2r'*/(1 + ).
Proor. These follow from (1.7) and the fact that u is a one-to-one function.

O
3.7. THEOREM. For K>0andr€]0, 1],

(3.8) @ax(r) = ox(2v'r/(1 + 1)),

(3.9) @ ((1 = )1 + 1)) = gx (/1 = 1),
1—n2\ 1 — pa(r?)

(3.10) Pux ( (1 + r) ) 1+l

Proor. If we divide both sides of the third identity in (1.7) by 2K and then
apply 1~ ' to both sides, we achieve (3.8), while (3.9) follows if we replace r by
(1 =r)( +r)in (3.8).

Next, by (3.4), the definition of g, and the third identity in (1.7) we have
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1—r 2) Kn? n? (1 - ¢2K(’2))
K = = = ;
# ( (1 + ") p(r?) 20(@2x(r?) # 1+ gpx(r?)

taking u ~! of both sides then gives (3.10). O

3.11. REMARKs. (1) The relation (3.5) was proved by D. Ghisa [G].

(2) From (3.4) and the fact that ¢,(r) = 2v/r/(1 +r) [LV, p. 64] it follows
easily that ¢, ,(r) =(1 —r)(1 +r), 0<r<1.

(3) For n-dimensional quasiconformal mappings see [Vu]. The n-dimen-
sional analogue of (3.4) is false; that is, for n = 3 it is not true that ¢ ,(r) +
@ik . (r)=1, where gy ,(r) is the n-dimensional counterpart of gx(r) (cf. [Vu,
5.61, (7.44)]. Otherwise, for K>1 by [AVV2, (3.6)] we would have
r' 5@k a(r') > AL~ Ve ~K+ Ve — o5 as r — 1, contradicting [AVV2, (3.14)]. By
symmetry, this argument also applies for 0 <K < 1. Alternatively (cf. [Vu,
7.58)), it may be shown that this (false) identity is equivalent to M, (r)M,(r') =
constant, which contradicts [AVV2, Lemma 2.6(2)]. Here M,(r) is the n-
dimensional analogue of u(r) (cf. [Vu, 7.58] and [AVV2]). In particular, we see
by (3.4) that for n = 3 and K > 1 there is no T > 1 such that gy ,(r) = ¢r,(r)
and @k ,(r') = @ur(r’) for all r €(0, 1).

3.12. LEMMA. For K> 1, let s = gi(r). Then g(r)=s'K()/(r'X'(r)) is a
strictly decreasing function from (0, 1) onto (0, 1).

ProoF. Since u(s)=u(r)/K, by differentiation it follows from [AVV3,
Lemma 2.7] and Legendre’s relation [BF, #110.10] that

S’H(s)

rr'A(r) [H(r)E(r) = H(S)E'(S)].

(rH (r))g'(r) =

But this expression is negative since s > r and X'(r)E’(r) is strictly increasing
on (0, 1). Finally, the limits g(0 +) = 1 and g(1 —) = 0 follow from I"'Hopital’s
rule. a

3.13. THEOREM. ForK>1landa,b€(0, 1)
ox(ab) < px(a)px(b).

PrOOF. For convenience we let gx be denoted by ¢. Fix a€(0, 1) and let
f(r)=9p(ar)o(r) for 0<r =1. Let ar =u, p(u)=t, and ¢(r) =s. Then by
[AVV3, Lemma 2.7] and Lemma 3.12 we have
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Kf'(r)sr _ < vA(t) )2 _ (s’.#(s))2 -0
t WA (u) r'A(r) '

Hence fis strictly increasing, and f(r) < f(1) = ¢(a). O

In the proof of our next functional inequality for p; we shall need the
following two lemmas.

3.14. LEMMA. Let f(r) = (log gx(r))/(log r). Then for K > 1, fis a strictly
decreasing function from (0, 1) onto (0, 1/K). For 0<K <1, f is strictly
increasing from (0, 1) onto (1/K, «).

PrOOF. First let K> 1. If we set s = gx(r) then 0<r<s<1 and K =
u(r)u(s). By [AVV3, Lemma 2.7] and [AVV3, Lemma 2.8(6)] we have

rlog r)’f'(r) =s'2x(s).1f'(s>[ v e ]<o

FAOA) A A )

for 0 <r < 1. We achieve the transition to 0 < K <1 by replacing K by 1/K.

The limit as r tends to 0 follows from ’Hépital’s rule, [AVV2, (3.7)], and the
asymptotic formula in [AVV2, Corollary 3.8]. As r tends to 1, the limit follows
by ’'Hopital’s rule and the values of p4(1) found in [AVV2, Corollary 3.8). O

3.15. LEMMA. Let f(r) = (artanh gx(r))/(artanh r). For K > 1, fis a strictly
decreasing function from (0, 1) onto (K, «).

ProoF. By (3.5), f(r)=(log ¢, x(s))/(logs), where s=(1—r)/(1+47).
Then the result follows from Lemma 3.14. O

3.16. COROLLARY. For K > 1, the function (artanh g,(tanh x))/x is strictly
decreasing from (0, ) onto (K, ).

ProOOF. Put r =tanh x in Lemma 3.15. O
A function-theoretic application of 3.15 will be given below in Remark 3.30.

3.17. THEOREM. ForK>1andr,s€(0,1),

(pK(" +S> < ox(r) + 9x(s) .
1+4rs 1+ px(r)px(s)

The inequality is reversed if 0 <K < 1.

Proor. Let K > 1. By Corollary 3.16 and [AVV2, Lemma 2.12] we get
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artanh gy (tanh(x + y)) <artanh gx(tanh x) + artanh gx(tanh y).

Now take tanh of both sides, use the addition formula for tanh, and set
tanhx =r,tanh y =s.
Finally, the result follows for 0 < K <1 when we replace K by 1/K. O

In 1984 He proved the following result [He, Lemma 1] for K = 1. It had been
mentioned by Hiibner [Hi) in 1970 without a proof. The extension to
0 <K <1 is a simple consequence of the fact that ¢, x = ¢ '.

3.18. THEOREM. For K> 1 the function r~"Xg(r) is a strictly decreasing
function of (0,1) onto (1,4'~Y%), For 0<K <1, r~" g, (r) is a strictly
increasing function of (0, 1) onto (4' VX 1),

We now prove some consequences of He’s theorem.
3.19. LemMA. For K = 1 and each nonnegative integer p,
Pu(r)?+ = 470 (12 ),

Proor. The proofis by induction. For p = 0 this is trivial. For p = 1, He’s
theorem and (3.2) imply that

ox(r?) Z r'’ ox(r) Z 471 g (r)™.
Now assume that-the lemma is true for integers < p — 1. Then
O+ Z PRp(7) Z 471 Rp(lge(r) Z 41 0 (ryp !
by the induction hypothesis. 0
3.20. THEOREM. Fora,b€E[0,1]andK =1,

(3.21) |px(@) — ox(b)) = px(la —b|)=4'""X|a - b|"¥,
andfor0<K =<1,
(3.22) lpx(a) — ox(b)| Z px(la —b|)z=4'""VX|a — b|"%.

ProoF. He’s theorem implies that r ~'gx(r) is decreasing on (0, 1). Hence
(3.21) follows from [AVV2, Lemma 2.12] and (3.2). Then (3.22) follows from
(3.21) when we replace X by 1/K. O

3.23. CorOLLARY. Forn=2,K=1,a,b,x,y€[0,1],a + b =1, we have

px(ax + by) = $(ax + by) " [(ax) ~"*px(ax) + (by) ~*ox(by)]

and
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px(ax + by) = gx(ax) + px(by) = px(@)px(x) + px(b)px ).
These inequalities are sharp for K = 1,
ProoF. These follow from He’s theorem and Theorem 3.13. a
3.24. LeMMA. ForK =1 anda,be€(0,1),
gx(ab) = max{b"*px(a), a"*px(b)}.
Proor. By He’s theorem,
(ab)~"*gx(ab) = max{a~"*px(a), b~ "*px(b)},
and the inequality follows. ]
3.25. CorOLLARY. ForK=1anda,b€(0,1),
ox(@)ox(b) = 4' VX py(ab).
PrOOF. By Lemma 3.24 we have
(ab) "*o(a)px(b) = (px(ad))*
and
(ab)VK = 4 -1+ YKy (ab). a
3.26. THEOREM. IfK=1,p=1,and x >0, then
gx(tanh px) =< p'¥py(tanh x).
Proofr. By He’s theorem,
(tanh px) ~"Xpy(tanh px) = (tanh x) ~"Xg,(tanh x).

But it is easy to show by differentiation that tanh px < p tanh x, and the
theorem follows. O

3.27. THEOREM. If K> 1, then ox(r) is strictly concave on [0,1] and
9x(0) = o0, px(1)=0. If 0 < K < 1, then gy (r) is strictly convex on [0, 1] and
9x(0) =0, px(1) = o0.

PrROOF. Let K>1,0<r <1, and s = gg(r). Then u(s) = u(r)/K and, by
[AVV3, Lemma 2.7],

dr Kr rar)

515 1s (s’.)(f(s))2



Vol. 62, 1988 QUASICONFORMAL MAPPINGS 13

He’s theorem implies that s/r is strictly decreasing as a function of r, while
g(r)=s"H(s)/(r’',H (r)) is strictly decreasing by Lemma 3.12. Hence the
derivative of @,(r) is a strictly decreasing function of r if K > 1. The strict
convexity of ¢, when 0 <K <1 now follows from the fact that ¢, .(r) =
ok ' (r).

The derivatives @x(0) and ¢i(1) for each K > 0 were obtained in [AVV2,
Corollary 3.8]. O

3.28. THEOREM. ForQ=r=1,
4VK(] + )~ VEpVK, 1=K=2,
ulr) = {4' VK(1 4 7)Y K22,
Proor. If K€[1, 2], then by (3.11)(2) and [AVV], (4.12)],
0c(r) = Prd9Ar)) = por)¥E = 4V (L + 1) "VKp VK,
The proof for K = 2 is similar, except that we use [AVV1, (4.11)]. O

3.29. ProoF oF THEOREM 1.3. The first inequality follows from [AVV?2,
Theorem 3.4]. For the second inequality we assume first that s €(0, 1) is so
small that 4!~ VXK 5 less than 1. Then by (3.2) and (3.1) we have

1
& MO Zu@ ST,

and it follows from the third identity in (1.7) that

2 22—1/K 12K
ﬂ<ﬁ> > Ku (_s_)
1+s 1 + 41-VEgUK
If we set r =2+/s/(1 +5) and use (3.1), then since s = (1 — r’)/(1 + r’) the
latter inequality reduces to

22— l/Kr /K

a1+ r/)ux + 41—1/K(1 - r/)l/K’

ox(r) =

which implies our assertion.
Next, suppose 4! VKUK >1  and set r=2vs/(1+s). Then s=

(1 —r)/(1 + r’), whence
41-vK (ﬂ) v 1
1+7r )

v
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Taking square roots and multiplying both sides by (1 + ") we obtain
21~ VKplK > (1 4 r)VK, from which it follows that
22—1/Kr]/K 2(1 _+_ r/) /K

>

(1+ r/)l/K +(1- r/)l/K = 1+ r/)l/K +(1 -

/)1/1( Z 1> gg(r). o

3.30. REMARK. Lemma 3.15 has the following application to the quasi-
conformal Schwarz lemma (cf. [LV, Theorem 3.1, p. 64]). Let p be the
hyperbolic metric of the unit disk B% and let f:B*—>B>C B? (cf.
[Vu, (2.18)])be K-quasiconformal. Then

p(f(x),f(y)) ( hp(x2 y))

for all x, y € B Since p is a metric it follows, for instance, from [AVV2,4.7(1)]
that tanh p(x, y)/2 is also a metric. Next, solving for p( f(x), f(y)) we obtain

(3.31) p(f(x), f(y)) < 2 artanh ¢y (tanh"’ x - 24 ))
Now, by the monotone property 3.15 and [AVV2, 4.7(1)] it follows that the
right side of (3.31) is a metric.

3.32. REMARK. In 1970 O. Hiibner [Hii] showed that
2 1
ox(r) =S rexp \i— (1 - E) r’z.x’(r).){’(r)] < 41-VKpUK
n

when K = 1,0 <r = 1, improving (3.2). We now show that Hiubner’s bound is
best possible in a certain sense. Suppose

ox(r) < rexp [3 (1 - 1) r'zw(r)x'(r)]
n K

for some.c > 1. Then letting K tend to oo and taking logarithms, we get

1
log -

2
L < 2 pe-i(nat(n).
n

r/c+1 =

But [AVV2, Lemma 2.6(2)] implies that the left side tends to o as r tends to 1,
while the right side tends to 0 by [BF, #112.01, 111.02], and we arrive at a
contradiction.
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Fig. 1. ¢(r) = 9,5(r), 0 <r < 1, and bounds thereof.

2r¥3

Lower: f(r)=tanh(}artanhr), g(r)=

A+ P E (-5
3n?

2’.12
Upper: F(r) =tanh (By—(r_)) , G(r)=rexp [—3;— X (r).xf’(r)] .

In conclusion we display in Fig. 1 the graph of the distortion function ¢,,(r),
obtained by linear interpolation from a table of values of x that we had
constructed by the arithmetic-geometric mean iteration of Gauss [BB] (cf.
[AS]). Then graphs of upper and lower bounds for ¢,,(r) are shown for
comparison. In particular, the functions f, F are the bounds in [AVV], (4.5)],
the function g is the lower bound in Theorem 1.3, and G is Hibner’s upper
bound in 3.30.
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